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The existence and stability of one-dimensional structures in reaction-diffusion systems subject to
convection velocity fields are studied analytically and numerically. Attention is focused on nucleation
patterns—which exhibit a well defined, localized accumulation of particles—in bistable reaction
models. It is shown that a sufficiently strong, implosive convection field is able to stabilize those
patterns, which are generally unstable in reaction-diffusion systems. Such velocity fields and the
stabilization mechanisms are characterized and some exact solutions of stable and unstable structures
in these reaction-diffusion-convection models are presented.
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I. INTRODUCTION

Reaction-diffusion (RD) models have been extensively
used to describe physical systems [1] such as chemical re-
actions [2], combustion [3], and electrothermal processes
[4]. They have also been applied in other branches of sci-
ence, particularly, in biclogy, where they are used as mod-
els for morphogenesis and population dynamics [5]. Their
interest is not only related to specific applications, but is
also due to the fact that RD processes are paradigmatic
of complex behavior, as they can exhibit, for instance,
self-organization, spatiotemporal pattern formation, and
chaotic evolution [6].

For one-component systems, RD models are described
by the nonlinear partial differential equation

9n = DV2n + vF(n), (1)

where n(r,t) is the relevant field, typically, a particle den-
sity. The source of nonlinearity in this equation is the
function F(n), which stands for the density-dependent
source due to reaction processes. The positive coefficient
7y measures their relative strength with respect to diffu-
sion, characterized by the diffusivity D.

A class of reaction models that has attracted consid-
erable interest because of its application to the analysis
of pattern formation are the bistable reactions [1]. In
these reactions, the spatially homogeneous rate equation
7o = F(n) has two stable stationary states, corresponding
to two solutions of F(n) = 0 at which F’(n) is negative.
Usually, between these two stable states there is an un-
stable one, with F’(n) > 0, situated at the limit of the
basins of attraction of the stable solutions. A charac-
teristic example of these bistable reactions is the Schlogl
model [7]

F(n) = (n1 —n)(nz —n)(ns —n) (2)

(n1 < ny < ng), where the stable states are n; and ns.
In the spatially dependent problem described by
Eq. (1), bistable reactions determine the system to be-
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have in a typical way, practically independent of the ini-
tial condition and the values of D and v [8]. In fact,
during the first stage of the evolution, spatial domains
develop, at which n(r,t) adopts a practically constant
value coinciding with one of the stable solutions of the
homogeneous rate equation. In the second stage, the
evolution consists mainly in the shock-front-like motion
of domain interphases [9], with steady growth or shrink-
age of the domains. Eventually, one of the two phases
dominates and the density n(r,t) becomes finally homo-
geneous. As a consequence of this typical behavior, it is
concluded that no stable spatial structures can develop in
a bistable reaction-diffusion system, at least in free space
[4].

A particular case of this conclusion is a well known
property of nucleating systems [10], which applies, for
instance, to phase transitions of the gas-liquid type. Un-
der fairly general conditions, nucleation is an unstable
process: once a nucleating center has formed, the con-
densed (liquid) phase region either grows indefinitely—
dominating over the diluted (vapor) phase—or shrinks
and disappears.

Is it possible to stabilize nucleation or other spatial
patterns in bistable reacting and diffusing systems by a
proper modification of the underlying transport process?
The answer to this question—the goal at which we aim
in this paper—has to do with the more general prob-
lem of interplay of reaction and transport mechanisms
other than diffusion. In particular, we are interested
in considering convective transport, which should play
a relevant role in the behavior of reacting fluids, combus-
tion, atmospheric dynamics, and other physical systems
[11-13]. The present paper is therefore devoted to study
the existence and stability of nucleation-type structures
in reacting, diffusing, and convecting (RDC) systems. It
is organized as follows. In the next section the model
equation is presented and patterns associated with nu-
cleation are characterized. In Sec. ITI, we show that the
spatial asymptotic behavior of the stationary solutions
to the model equation determines their existence. Next,
the stability of the stationary patterns, related to the
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development of shock structures in the RDC system, is
studied both analytically and numerically. Some exact
solutions, in the frame of the so-called Ballast reaction
model [4], are presented in Sec. V. Finally, we summarize
.our results in Sec. VI.

II. THE REACTION-DIFFUSION-CONVECTION
MODEL: NUCLEATION PATTERNS

As a first approach to the study of nucleation struc-
tures in RD systems subject to convection, we consider
a one-dimensional system of reacting and diffusing parti-
cles, passively transported by a velocity field v(z). This
implies that the convective flow is not affected by reac-
tions and therefore v(z) can be considered as a given
field. A more general treatment would imply the con-
sideration of an evolution equation for the velocity field
and, eventually, for higher-order velocity moments, such
as temperature or pressure [13].

Within the hypothesis of passive transport, the one-
dimensional version of Eq. (1) generalized to consider
convection reads [12]

Oin + 8, (vn) = DI2n + yF(n). (3)

As in the case of Eq. (1), the formulation of this RDC
equation is essentially phenomenological. Stationary so-
lutions to Eq. (3) satisfy the ordinary differential equa-
tion

(vn)" = Dn'" + yF(n), (4)

where the primes indicate differentiation with respect to
x.

According to the discussion in the Introduction, we
shall consider a bistable reaction model, qualitatively
similar to Eq. (2). For simplicity, and without loss of gen-
erality, we suppose that the lower stable state of the reac-
tion process is n; = 0. Nucleation structures will there-
fore be associated with a density domain where n(z,t) is
near the higher stable value ng. We shall call such a do-
main the condensed region. Outside the domain, in the
diluted region, the density should decrease to zero.

We expect that, in order to avoid the indefinite growth
or shrinkage observed for density domains in RD systems,
the convection velocity field able to stabilize such pat-
terns should be implosive or explosive, respectively. In
an implosive (explosive) field, in fact, velocity is directed
“inward” (“outward”) and it may be able to resist the
ustable combined effect of reaction and diffusion over a
density domain near the implosion (explosion) center. In
view of this, and with the aim of simplifying the math-
ematical problem, we consider implosive and explosive
symmetric velocity fields centered at z = 0:

v(z) = —v(—z) < 0 for = > 0 (implosive)

(5)

v(z) = —v(—z) < 0 for z < 0 (explosive).

Although studying implosive and explosive velocity
fields only could seem a severe restriction on the appli-

cability of our results, it is worthwhile to observe that,
at least locally, practically every velocity field has a well
defined implosive or explosive character. Indeed, an ar-
bitrary v(z) can be expanded around a given (regular)
point zg as v(z) = v(zo)+wo(T—x0), With wg = dv/dz|s,.
Therefore, except for the constant term v (o), which acts
as a locally homogeneous drift, v(z) is implosive (explo-
sive) if wg is negative (positive). In view of this, we expect
our results to be useful in the description of a wide class
of situations, at least in an approximate way.

We shall consider here symmetric density fields
n(z,t) = n(—=z,t), which will produce symmetric station-
ary nucleation patterns. These symmetry properties in
v(z) and n(z,t) make it possible to restrict the problem
to the positive z axis, with the boundary condition

v(0)n(0,t) = DI,n(0,1), (6)

which can be obtained by integrating Eq. (3) around
z = 0. Note that, at the origin, n(z,t) is a continuous
function, whose derivative can present a finite disconti-
nuity if the velocity field is also discontinuous.

A relevant condition to impose over the nucleation
structures in order to represent a well defined, physically
meaningful accumulation of particles is to involve a finite
particle number, i.e.,

/+°° n(z,t) dz = 2/0+°° n(z,t) dz < oco. (7)

— oo

This restriction completes the characterization of the
density patterns that we shall consider in the following.

III. EXISTENCE OF NUCLEATION PATTERNS:
ASYMPTOTIC ANALYSIS

In the analysis of the possibility of stabilizing RD pat-
terns with a convection field, a reasonable first step is
to ask about the situation when reactions are completely
neglected. In fact, diffusion by itself is unable to produce
stationary spatial structures; on the contrary, it tends to
eliminate inhomogeneities. Is a velocity field able to com-
pete with this effect, producing stable stationary struc-
tures? The answer is “yes.” Setting v = 0 in Eq. (4), its
solution with the boundary condition (6) reads

n(z) = n(0) exp [% /0 " (@) dz’}, ®)

where the density at the origin n(0) is an arbitrary posi-
tive constant. A straightforward linear stability analysis
of this solution shows that it is stable.

The solution (8) can be related to the RDC nucleation
patterns only if the density field satisfies n(z) — 0 for
r — o0o. As a necessary condition, this implies that
v(z) must be negative for £ > 0. Therefore, as could
be expected, the kind of structures we are interested in
occur, in the absence of reactions, for implosive velocity
fields. Supposing that v(z) does not have nonintegrable
singularities, whether the condition of integrability (7) is
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satisfied depends on the asymptotic large-z behavior of
the velocity. We analyze here the asymptotic power-law
forms v(z) - —Az® (A > 0), as they are representative
of the possible instances of integrability of n(z). Mak-
ing the power a vary over the whole real domain, these
forms of v(z) could give a reasonable idea of the behav-
ior of the system under the effect of more general velocity
fields. Three cases can be distinguished.

(i) @ > —1. In this situation, the large-z spatial depen-
dence of the density is n(z) o exp [-Az**!/D(a + 1)]
and therefore n(z) is always integrable.

(ii) @ < —1. In this case, for £ — oo, n(z) has the
same form as before but, since o + 1 < 0, the density
approaches a constant and cannot be integrated in the
diluted region.

(iii) & = —1. In this marginal case, in which the con-
stant A has units of a diffusivity coefficient, the density
behaves as n(z) o« z~4/P and its integrability depends
on the relative value of A and D. It is integrable for
A > D, i.e., when velocity dominates over diffusion and
vice versa.

Having a complete solution for the diffusion-convection
system, the original RDC problem can be envisaged from
an alternative viewpoint: How do reaction processes af-
fect the existence and stability of diffusion-convection
nucleation-type structures? In order to answer the ques-
tion about existence, we note that, upon very general
conditions on v(z) and F(n), the solution to the ordi-
nary differential equation (4) with v # 0 does exist [14],
although finding its analytical form could be impossible
in practice. According to Eq. (7), the association of such
a solution with a nucleation pattern depends only on its
integrability, which is again related to its asymptotic be-
havior in the diluted region.

For large z, the density is expected to asymptotically
vanish, so that the effect of reactions in that limit is
determined by the form of F(n) near the stable state
n = 0. We suppose here that, for n — 0, yF(n) goes as
—vom (Yo > 0), so that the asymptotic analysis can be
carried out on the linear equation

— A(z*n) = Dn" — von, (9)

where we have taken for v(z) the same asymptotic form
as in the diffusion-convection case.
The results of this analysis are summarized as follows.
(i) 0 < a # 1. The contribution of reaction pro-
cesses to n(z) consists of an exponential factor of the
type exp(—Bz>~!) (B is a constant). Hence the large-z
behavior of n(x) coincides with the diffusion-convection

result
a+1l
n(z) o« exp (— Az ) . (10)

5 a+1

(ii) a = 1. In this particular case,
n(z) o« 277"/ exp (—Az?/2D). (11)
An exact solution of this type will be presented in Sec. V.

(ili) =1 < a < 0. For these weaker velocity fields, the
reactions enter the asymptotic behavior of the density

through an exponential factor that, in fact, dominates
over the reaction-convection contribution:

n(z) o« exp (—\/—%z) exp (—% fﬁ:) . (12)

In the limit o = 0 the density decays in a purely expo-

nential way n(z) x exp {—— (A + \/m) z/ZD] ,

as in one of the exact solutions presented in Sec. V.
(iv) @ = —1. In this marginal situation, the exponen-
tial factor found in the previous case appears again:

n(z) oc z~4/2P exp (-J%:O . (13)

This case will be also considered when analyzing some
exact solutions.

(v) a@ < —1. Finally, for these very weak velocity fields,
reaction processes completely determine the asymptotic
decay of n(z) and the effect of v(z) results to be irrele-
vant. We find

n(z) o exp (— \/%w) . (14)

From the mathematical viewpoint, it is interesting to
note that these asymptotic decays do not reduce in all
cases to the diffusion-convection results as yo — 0. This
is due to the fact that the appearance of the reaction
term changes the order of the stationary RDC equation
(4), which, for v = 0, is essentially a first-order one.

According to the results of this asymptotic analysis,
we see that when reaction processes do act the station-
ary solutions to the RDC problem are integrable for all
values of a and therefore can be acceptably associated
with nucleation structures. It is worthwhile to remark
that for a < 0 the integrability is completely determined
by the reaction term and does not depend on the sign of
the constant A, i.e., on the sign of the velocity field. For
positive «, instead, integrable stationary structures oc-
cur only for implosive fields, as in the reaction-convection
problem.

In summary, stationary solutions of the nucleation type
in the RDC problem with bistable reactions are possible,
at least for a wide class of velocity fields. The main
question, i.e., whether such structures are stable or not,
still subsists, however. Its answer is outlined in the next
section.

IV. STABILITY OF PATTERNS: SHOCK-FRONT
DYNAMICS

Analyzing the stability of the stationary solutions to a
nonlinear partial differential equation of the type of (3)
usually requires knowing first the explicit form of those
solutions. Unfortunately, we cannot expect to obtain the
exact stationary densities n(z) from Eq. (4) for general
forms of the velocity field and the function F(n). As
shown in Sec. V, the stationary equation admits analyti-
cal solution only for a few very special forms of v(x) and
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within a particularly simplified reaction model. Such so-
lutions are often given in terms of complicated special
functions. Therefore, most of the conclusions presented
in this section, which mainly concern the stability of the
stationary solutions, are based on a numerical resolution
of Eq. (3). The numerical algorithm consists of a finite
difference scheme, which, with a suitable choice of spatial
and temporal increments, proves to be fairly stable.

As stated in the Introduction, the dynamics of bistable
RD systems for moderately large times is governed by the
motion of domain interphases, which, after a short tran-
sient, develop a well defined shock-front shape and move
at constant speed. This behavior is the main source of
the instability that characterizes stationary structures in
such systems. It is therefore reasonable to ask, as a first
step in considering the stability problem in the full RDC
model, what kind of evolution characterizes the motion
of interphases between condensed and diluted domains
when a velocity field is superposed to the diffusive trans-
port.

In order to answer this question, consider first a con-
stant, space-independent velocity field. In this situation,
we propose a similarity solution to Eq. (3), namely a
shock front of the form n(z,t) = n(z — ct) = n(£). The
RDC equation for this solution can be written as

(—c+v)n' = Dn" + yF(n), (15)

where the primes indicate differentiation with respect to
§. Requiring that n(§) — ni sufficiently far from the
front, where either n_ = n; and n_ = nj3 or vice versa,
Eq. (3) can be multiplied by n’ and integrated over the
¢ domain to provide an approximated evaluation of the
shock-front speed c [8,13],

/M F(n)dn=v+co, (16)

where A is the width of the front and ¢y is its velocity for
v = 0. This result indicates that, as we could expect, the
constant velocity field is simply superposed to the front
speed of the RD system. Some exact solutions to Eq. (15)
with v = 0 in the frame of simple reaction models [4]
show that the front width A is essentially equal to 4/ D/~
and does not depend on the value of ¢o. In fact, the
shape of the shock front is determined by the interplay
of reaction and diffusion and the front speed cy, which
is proportional to \/yD, only characterizes the motion of
the interphase. As a consequence, we do not expect A to
be modified by the superposition of the constant velocity
v.

Numerical calculations show that, even for a space-
dependent field v(z), the front width is practically not
modified by the velocity, at least for moderate values
of v. This can be understood by taking into account
that, although velocity gradients would tend to spread
or concentrate the density front, reactions do modify the
density by “creating” or “annihilating” particles and, as
before, it is their interplay with diffusion that ultimately
determines the front shape. Therefore, as a first approx-
imation, the front speed can be put in terms of v(z) as

a straightforward superposition of the velocity field and
o, ¢(z) = co + v(x). Again, this approximation can be
confirmed by numerical means.

The approximated form for the shock-front speed in
a velocity field ¢ = ¢o + v makes it clear that v(z) will
be able to stabilize the otherwise unbounded motion of
the front if there is a point at which v(z) = —c¢¢ and
the front is directed toward it. In terms of the station-
ary structures we are interested in, it can be said that a
nucleation center will develop an outgoing shock front de-
pending on the relative values of ¢g and v(z) at the initial
condensed region, more precisely, if ¢¢ > —v(z). Then
the unbounded growth of this domain will be stopped
only if v(z) is an implosive field, whose modulus grows
with z, such that at a certain point |v(z)] = ¢o. In any
other situation, either for an implosive velocity field with
decreasing modulus or for an explosive v(z), a growing
nucleation center will not be stabilized.

The situation is very different when, in its initial evolu-
tion, the condensed region begins shrinking. If the origi-
nal nucleation center is large enough, an incoming shock
front could develop, which would be stabilized by an ex-
plosive velocity field at a point where v(z) = |co|. The
identification of such an stable pattern with a nucleation
structure would depend on the particular form of v(z) in
the diluted region, according to the discussion in Sec. III.

However, in view of the kind of real situations in which
nucleation patterns could appear, such as, for instance,
vapor-liquid-like phase transitions, we are mainly inter-
ested in describing initial conditions with a relatively
small condensed region. Under these circumstances, if
the initial region begins to shrink, there is no time avail-
able to develop a shock front. Numerical simulations
show that, even in this case, stable stationary solutions
do exist if the velocity field is implosive. Contrary to the
previous cases, these stable structures show no features
similar to stationary shock fronts and they are typically
characterized by a highly populated, small condensed re-
gion at the origin. The mechanism that makes the nu-
cleation structures stable in this case is different from
the stabilization of shock fronts, as its does not consist
simply in opposing advection to the shock motion. Here
the large value of n(z) at the nucleation center, always
exceeding the high-density stable state nz, would tend
to decrease by the combined action of chemical reactions
and diffusion. However, this central region is constantly
being fed by the implosive velocity field, which trans-
ports particles from the diluted phase. These two op-
posite trends can compensate each other and produce a
stationary stable state consisting of a sort of net density
“circulation” between the interior and the exterior of the
nucleation center.

Figures 1-3 show some instances of the situations an-
alyzed in this section. In Fig. 1 the relative values of ny
and n3 enable the formation of an outgoing shock front
from a highly concentrated initial nucleation center. The
implosive velocity field is constant and therefore its value
is simply superposed to the shock-front speed. As a con-
sequence, after a short transient, the shock front moves
at constant speed and the nucleation center grows indef-
initely. Note the density spike at £ = 0, due to the finite
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2.0

n(;c,t)

FIG. 1. Numerical solution for the evolution of the den-
sity n(z,t) of a reaction-diffusion system in the presence of
a constant implosive convection field. The bistable reaction
model determines the appearance of an outgoing shock front
whose speed is superposed to the convection velocity. Both n
and z are given in the units determined by the choice of the
parameter values.

value of v(x) at that point. Regarding diffusion and re-
action processes, Fig. 2 shows a similar situation. The
difference is now that v(z) grows linearly with z. Hence,
at a given point, this implosive velocity field will be able
to stop the shock front, stabilizing the growth of the con-
densed region. Finally, Fig. 3 depicts a case in which the
values of ny and ns produce an initially shrinking nucle-
ation center. The density near the origin grows due to
the implosive constant velocity field and the mechanism
described in the previous paragraphs begins to act. After
a certain time, the stationary state has been practically
reached.

2.0

L3 v(x) =-0.02 x

n(x,t)

X

FIG. 2. Same in Fig. 1, but for an implosive velocity field
whose modulus grows with 2. Now the shock-front speed
decreases as the front moves. Asymptotically, the shock front
stops and the system reaches a stationary state in the form
of a stable nucleation structure.
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FIG. 3. Here the relative values of ny and n3; determine
that the initial condensed region shrinks without forming a
shock front. The system reaches a highly concentrated sta-
ble state according to the density circulation mechanism de-
scribed in Sec. IV.

V. SOME EXACT SOLUTIONS: THE BALLAST
MODEL

As pointed out above, an explicit stability analysis of
a stationary solution to a given dynamical system usu-
ally requires knowing the exact form of such a solution.
Exact solutions are also interesting as they facilitate the
study of parameter dependence. In one-species reaction-
diffusion problems, exact stationary solutions are practi-
cally restricted to the Ballast reaction model [4]. In this
model, the reaction term is piecewise linear

F(n) = —n + n30(n — ny), (17)

where ©(n) is the Heaviside step function. This reac-
tion model, which has stable stationary states at n = 0
and n = n3, can be seen as a linearized mimic of the
Schlogel model Eq. (2). Its piecewise linear form makes it
possible to treat analytically the corresponding reaction-
diffusion equation in separate spatial domains, which
is then matched with appropriate continuity conditions.
On the other hand, due to the discontinuity of F(n) at
n = ng, the Ballast model essentially preserves a nonlin-
ear character and therefore provides a suitable frame to
discuss more general forms of F'(n).

In connection with some of the cases analyzed is
Secs. III and IV, we present in the following the exact
solutions to Eq. (4) for three forms of the convection field
v(z). In the first place, we study a linear implosive ve-
locity field v(z) = —z /7, where 7 > 0 is a characteristic
time scale. According to the previous discussion, such a
velocity field should be able to stabilize outgoing shock
fronts. Within the Ballast model Eq. (17), the stationary
RDC equation in the diluted region (n < n2) reads

0=7Dn" +zn' + (1 — y7)n. (18)

As for the condensed region, it can be readily seen that
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7 = y7mng/(yT — 1) — n also satisfies Eq. (18). Tak-
ing n(z) = exp(—z?/4D7)u(z), the equation for u(z)
is solved by the parabolic cylinder or Whittaker func-
tions, which can in turn be put in terms of the confluent

J

n(z) = { aexp(—z2/2D7)U(y1/2,1/2,22/2DT)
yrns/(yr — 1) — bexp(—z2/2D7T)M (y7/2,1/2,22/2D7) for x < z3,

where z is the (unknown) point at which n = ny,. The
constants a and b are determined by requiring continuity
of n(z) and its derivative at £ = 5. These conditions
provide linear equations for a and b in terms of 5. Then,
the equation n(z2) = ng can be used to obtain the value
of zp. This is a highly complicated equation, which has
to be treated numerically. An alternate way to treat this
problem consists in calculating the values of ns by fixing
2. This has been done in Fig. 4 to illustrate the type of
solutions obtained.

In the diluted region, the solution (19) decays as pre-
dicted by Eq. (11) in Sec. III. Furthermore, once the com-
plete form of the stationary solution is known, its stabil-
ity can be numerically evaluated by means of the usual
linearization scheme. As expected from the discussion in
Sec. IV, stability results when the reaction parameters ny
and n3 determine the existence of outgoing shock fronts.

Curve 1 in Fig. 4 corresponds to the solution (19) with
D=1,y=1,7 =5 n3 =1, and z = 8, which implies
ny = 0.21. Although the value of z; is not very large
as compared with the shock-front width, the appearance
of such a structure is apparent. The point at which it
has stopped due to the implosive velocity field agrees
acceptably with the approximate evaluation presented in
Sec. IV.

2.0
15}
€ o} ®
05F @ @
0.0 A s R
0 2 4 6 8 10

FIG. 4. Some exact stationary solutions for the Ballast re-
action model. Curves 1 and 2 correspond to stable nucleation
patterns produced by the stabilization of a shock front and
the density circulation mechanism, respectively. Curve 3 is a
shock-front-shaped unstable structure.

hypergeometric functions U(a,b,c) and M(a,b,c) [15].

Taking into account the boundary condition at z = 0,
Eq. (6), and an appropriate density decay for £ — oo,
the density profile for this linear velocity field is

for z > z» (19)

f

As a second instance in the form of v(z) we consider
now a constant implosive velocity field v(z) = —v, with
v > 0. The stationary RDC equation in the diluted re-
gion reduces in this case to a second-order ordinary dif-
ferential equation with constant coefficients

0 = Dn" +wvn' — yn. (20)

In the condensed region n = nsg — n saticfies the same
equation. The solution to the RDC stationary problem
is then

nz + bexp(Ayz) + cexp(A_z) for z < xa,
(21)

n(z) = { aexp(A_zx) for z > x,

with Ay = (—v+x+4/v2 +4D~)/2D. Again, the boundary
condition at £ = 0 and the continuity of n(z) and its
derivative at * = x5 determine the constants a, b, and ¢
as functions of z,. This coordinate is then obtained from
n(z2) = m2. For some special values of A+ this calcu-
lation can be carried out analytically. A linear stability
analysis indicates that this solution is stable.

In Fig. 4, curve 2 corresponds to the solution given by
Eq.(21) for D=1,y=1,v=1,n3 =1, and z3 = 3,
which corresponds to ns = 0.29. As discussed in Sec. IV,
a constant velocity field is generally not able to stabilize
a shock front and stable structures can exist only by the
action of an alternative mechanism of density circulation
between the diluted and the condensed phases. The curve
shown in Fig. 4 is a typical example of a stable structure
in these conditions, exhibiting a high population at the
nucleation center (compare with Fig. 3).

A third case in which the stationary RDC equation can
be exactly solved corresponds to v(z) = —Do(z + o) %,
with Dg,z¢o > 0, i.e., an implosive decreasing velocity
field. According to Eq. (13), this gives rise to an ac-
ceptable nucleation pattern, as the density decays as the
product of an exponential times a negative power of x.
In this case, Eq. (4) becomes

0 = (z 4 x0)’Dn" + (z + z0)Don’
— [Do +7(z +20)?| n (22)

in the diluted region. Defining n(z) = z!'~YH(z), with
z = +/v/D(x + o) and v = (1 + Do/D)/2, Eq. (22) re-
duces to a modified Bessel equation for H(z) [15]. There-
fore, for £ > x5, we have
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n(z) =a(z + z0) VK, (v/7/D(z + z0)), (23)

where K, (z) is the modified Bessel function with the
proper asymptotic behavior. In fact, the large-x depen-
dence of n(z) coincides with Eq. (13).

In the condensed region the mathematical problem be-
comes more complex. The corresponding Bessel equation
presents now a constant inhomogeneity and the general
solution must be given in terms of Lommel functions [16].
These can in turn be expressed in integral form, which
is more convenient for the numerical evaluation of the
solution. For z < z2, the density is

n(z) = (z +20)' " [bL,(v/7/D(x + o))
+eK, (vV7/D(z + 20))]

/2
—(z + z0) A sinh [(z + zo) cos ] (sin §)*"d0.
(24)

As in the previous instances, the coefficients a, b, and ¢
in Egs. (23) and (24) are obtained from the boundary
condition at £ = 0 and continuity requirements at z =
Ia.

Curve 3 in Fig. 4 corresponds to this solution for v = 1,
D =1, v = 075, zg = 1, and z; = 7, which gives
ny =~ 0.48. In a pure RD system, this value of ny would
produce an outgoing shock front, so that the condensed
region would grow indefinitely and the density would fi-
nally approach ng for all z. In the presence of convection,
the stationary density profile presents a spike at z = 0,
due to the finite value of v(z) at that point, and, for
larger values of z, it is also step shaped. Now, according
to the discussion in Sec. IV, we know that the decreas-
ing implosive velocity field we are considering here would
not be able to stabilize such a structure, at least for high
values of z3. In fact, a numerical linear stability analysis
of this solution shows that it is unstable. This nucleation
pattern will then grow and the shock front will eventually
reach a region in which the effect of the convection field
is negligible.

VI. CONCLUSION

In this paper we have analyzed some aspects of the ef-
fect of convective transport on the evolution of reaction-
diffusion systems. In particular, we focused attention
on the existence and stability of stationary spatial pat-
terns representing nucleation structures, in the frame
of bistable reaction models. It is well known that un-
bounded diffusion cannot stabilize the growth or shrink-
age of density domains as, for instance, in phase tran-
sitions. Therefore, the question of whether a convective
velocity field superposed to diffusion is able to produce a
stable localized pattern arises quite naturally.

In order to simplify the mathematical problem we con-
sidered a one-species system evolving in one dimension
and submitted to diffusive, convective, and bistable re-
active processes. We stress that the type of analysis
used here to study one-dimensional flows can be eas-

ily extended to many-dimensional problems, which, due
to suitable symmetries, are described by only one vari-
able. This applies not only to two- or three-dimensional
flows with planar symmetry but also, for instance, to
radially symmetric cylindrical or spherical systems. In
the case of curvilinear coordinates, however, the differ-
ential operators in Eq. (4) should be conveniently mod-
ified. Certainly, an extremely interesting generalization
of our analysis would be to consider flows with many spa-
tial variables. In this case, velocity fields can be much
more complex than in one dimension, giving rise to a
wide class of new effects, such as distortion of the nucle-
ation centers. This generalization, however, would imply
a considerable complication of the mathematical problem
and should be treated separately.

Nucleation patterns were characterized as localized
structures with a well defined particle number, i.e., with
integrable density. In the central or condensed region,
which was taken to be symmetric in shape, the density
has a relatively high value, usually near the highest sta-
ble state of the reaction process. Outside that region, the
density must decay rapidly enough to ensure integrabil-
ity.

It can be easily seen that implosive velocity fields su-
perposed to diffusive transport can produce stationary
density structures. Therefore, the question addressed in
this paper can be reformulated by asking about the ef-
fect of reactions on the evolution of a diffusive and con-
vective species. Here it has been shown that reactions
favor the existence of nucleation patterns. In fact, ex-
cept for some marginal case, they usually determine the
diluted-region density to decay exponentially. Hence lo-
calized stationary structures associated with nucleation
processes in reaction-diffusion-convection systems exist
under fairly general conditions.

Determining if such stationary structures are stable is
a more difficult task. Usually, a stability analysis requires
knowing the explicit form of the solution. This restricts
the treatment of our problem to the use of numerical
techniques. Numerical simulations of the evolution of
the reaction-diffusion-convection system show that, in a
broad class of situations, the stability of nucleation pat-
terns depends on the competition of the convective trans-
port and the shock fronts that emerge from the interplay
of diffusion and bistable reactions. Roughly speaking,
we can say that the velocity field is simply superposed
to the shock-front motion. Then, convection will be able
to stop the shock front if, at a certain point, the velocity
equals in modulus and is opposite in sign to the shock-
front speed.

When the initial evolution does not give rise to a shock
front, as it usually occurs for shrinking, initially small
condensed regions, a different mechanism can neverthe-
less produce stable patterns for implosive velocity fields.
In this situation, a high concentration develops at the nu-
cleation center. Both reaction and diffusion tend to de-
plete such overpopulation but convection feeds back the
center, carrying particles from the diluted region. Even-
tually, a stable density circulation is established and the
nucleation center becomes stationary.

We stress that a more rigorous, global stability anal-



52 NUCLEATION STRUCTURES IN REACTION-DIFFUSION- . . .

ysis could be carried out if it were possible to find a
Lyapunov functional for the evolution of the reaction-
diffusion-convection system [1,17]. Unfortunately, the
dissipative character of the convective term in Eq. (3),
which otherwise could be treated through a mechanical
analogy [4], makes it difficult to determine the appropri-
ate functional.

Finally, we have presented some exact stationary solu-
tions for various representative forms of the velocity field,
in the frame of the Ballast model. This piecewise lin-
earized reaction model preserves, on one hand, the main
features of nonlinear bistable models; on the other, its
linear character makes its analytical treatment possible.
For these stationary solutions, stability can be explicitly
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studied. In this way, we have verified, at least, in some
particular cases, the main conclusions on the stabilization
of nucleation patterns by convective transport. Besides
the interest of these results in terms of specific problems
associated with nucleation processes they are intended
to contribute to our understanding on the interplay of
reaction, diffusion, and other, more complex transport
mechanisms.
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